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Abstract: Prove Accuracy of 
SRAM FPGA SEU Simulator

Prove the accuracy of results obtained with 
SRAM FPGA SEU simulator in DYNAMIC
tests

Use simulator to measure sensitivity of 
configuration bits (those that may cause output 
errors) and forecast fluence per output error
Use accelerator to measure sensitive configuration 
bits and fluence per output error
Compare predicted to measured values

98% ACCURATE!
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Why Use SRAM FPGAs in Space?
Performance: 100x vs. radiation hardened µP (for 
fixed volume, power, weight), continuous processing 
at 100+ MS/s
On-orbit processing: can improve system sensitivity 
and reduce communication bandwidth 
On-orbit reprogrammability: counteract mission 
obsolescence and on-orbit faults
Cost: cheaper than low-volume ASICs
Lead time: no ASIC design, fab, and test
Challenge: SEUs!



4

Test Facility
Crocker Nuclear Laboratory, UC Davis
Protons 63 MeV
Previous experiments show saturation well 
below 30 MeV[2]
Protons desired: lower interaction rate than 
heavy ions allows slower SEU introduction 
rate
Slower SEU rate necessary for dynamic 
testing
Flux Range: 1 – 3.5 x 107 P+/cm2/s
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SRAM FPGA Architecture
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SRAM FPGA Configuration Bits
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FPGA Design Implementation
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FPGA Design - Routing Upset
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FPGA Design - Logic Upset
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Configuration Bitstream Upsets

Configuration upsets are not permanent and 
can be repaired at run-time

Upsets in configuration memory can be detected 
through the device configuration readback
Configuration faults can repaired through partial 
configuration
Readback and partial configuration can operate 
during circuit execution

With a few caveats (BRAM and LUT RAMs excluded)
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Configuration Sensitivity
Not all FPGA configuration bits affect dynamic design 
behavior

Many unused logic/routing resources for a design
Many “don’t care” conditions within a design

The “Configuration Sensitivity” of an FPGA design is 
the number of FPGA configuration bits that affect the 
design behavior.

Dependent on the design style and density
Only upsets of sensitive configuration bits will cause a 
design to fail
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99.58%
Configuration Bitstream 

Flip-Flops
0.42%

Total Static Cross-section of DUT*

Simulated Upsets

NOT Simulated

*Assumes Half-Latches are removed from Design[3][8]
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SEU Simulator Concept [10]

SEUs simulated by intentionally corrupting bits in the 
configuration bitstream while test design in operation
Typically, only a single-bit upset is introduced at a 
time, though multi-bit upsets are possible.
Output from a Design Under Test continually 
compared with “Golden” design.
Configuration bits yielding output errors when upset 
are marked as “sensitive” and recorded in database 
(database will be design dependent).
Many trials per bit provides a measure of the 
probability that a sensitive configuration bit will cause 
an output error
Upset sequence not important
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Simulation Procedure
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•Each cycle can be as little as 216 us
•Entire bitstream can be simulated in <25 min
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Test Coverage
Dynamic testing has problems with input 
vector test coverage

Both accelerator and simulator have these 
limitations

We used LFSRs for Automatic Test Pattern 
Generation on the Mult/Add test designs
On-orbit configuration SEUs persist briefly 
before repair, similar to simulation and 
accelerator testing
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SLAAC-1V SEU Simulation Testbed

Platform: SLAAC1-V
Developed at USC-ISI East 
as part of DARPA ACS 
program[6]
Supports high-speed partial 
reconfiguration and 
configuration readback
Open platform
Uses XCV1000 devices
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SLAAC-1V Proton Radiation Test Fixture
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• Same platform used for 
SEU simulation except the 
X1 FPGA was socketed.

•The DUT FPGA is 
irradiated while operating 
synchronously with the 
“golden design”.

•X0 provides design 
stimulus and compares 
outputs to identify errors
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Multiply and Add Test Design
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36 bits

36 bits



19

LFSR Test Design
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Test Design Utilization

Design Slices LUTs Flip-Flops
72 Mult 8,308 10,872 15,264
36 Mult 2,206 2,844 3,744
72 LFSR 8,712 576 8,640

Designs simulated and tested in accelerator at 20 MHz (one trial at 2 MHz to 
test for clock dependency, none detected with available statistics).
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Simulation: Database Generated 
For 72-Mult Test Design

Contains probability of output error for each 
configuration bit, plotted geographically
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Exploded View of Simulator Database
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Simulator: Distribution of 
Database for 72-Mult
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Accelerator Concept
SEUs slowly introduced with protons
Monitor outputs for errors (Golden ≠ DUT) & note 
time
Readback device configuration bitstream
continually, note time and location of upsets
Use partial configuration to repair bitstream
upsets
Reset DUT & Golden after output errors
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Accelerator Test Setup
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vacuum

Top View

Side View
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Accelerator      
Test Procedure
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Accelerator: Example Results
type of error
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Distribution of Configuration 
Upsets / Observation Cycle
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Simulator vs. Accelerator: 
Average Fluence/Output Error



31

Simulator vs. Accelerator

•Predicted output errors observed and Flip-Flop output errors 
•Predicted vs. observed sensitive configuration bits

Percentage of observed output errors in accelerator predicted with simulator
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Simulator: Forecast Distribution 
of P+ Fluence per Output Error
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Accelerator: Measured Distribution of 
P+ Fluence per Output Error
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Conclusions
Configuration bitstream dominates sensitive cross-section
Simulator accurately tests configuration bitstream SEUs

Sensitive configuration bits identified
98% Accurate in predicting output errors in comparison to accelerator

Simulator accurately forecasts DYNAMIC design sensitivity
Dynamic sensitivity may be much lower than static cross-section may 
suggest => less frequent output errors
Not every configuration upset contributes to output errors
Sensitivity depends on design utilization & mitigation employed

Simulator can now be used to:
Forecast dynamic behavior of a design in presence of configuration SEUs
Validate SEU mitigation strategies (design modifications for hardening)
Assure that mitigation strategies employed

Are not eliminated by design tools
Function as expected
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